3x^2+1=73

Simple and best practice solution for 3x^2+1=73 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+1=73 equation:



3x^2+1=73
We move all terms to the left:
3x^2+1-(73)=0
We add all the numbers together, and all the variables
3x^2-72=0
a = 3; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·3·(-72)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*3}=\frac{0-12\sqrt{6}}{6} =-\frac{12\sqrt{6}}{6} =-2\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*3}=\frac{0+12\sqrt{6}}{6} =\frac{12\sqrt{6}}{6} =2\sqrt{6} $

See similar equations:

| 5x2-10x=0 | | 5x-8+1=-4x-7+7x | | 10=6=2u | | 162-12y/24+4y=43 | | 4x2-4x=0 | | (5y)+110=180 | | 0.9-0.4z=5.7 | | 2(7y−1)=40 | | 1=2j=9 | | 2(-5+4p)=-2(5+3p) | | 1/4c+3/4=-1/2 | | 18x2-29x+3=0 | | 5x-8=X+3 | | 7x*(-3)=252 | | (3x-55)=(2x) | | 9x-3=3x-10,5 | | 4+4(3x-6)=5(2x+1) | | 4x-11=6x+12 | | 4-3x=x+4 | | x2-7x+19=0 | | 50-1/5x=4 | | 4x2-8x+3=0 | | x/9+4=8 | | 53=8x+1 | | -4(2x+4)+3x+2=−44 | | 8(5+7p)=-2p-5(p-8) | | 4(-x+5)+2x+2=4 | | 2x-7x+53=2x+39 | | 13x+7=-46 | | 12x2-7x-10=0 | | x/8-4=2 | | 8x(x-3)=10 |

Equations solver categories